Matlab course for wireless communication engineering

A step by step the Matlab codes for BER estimations of different Comm. systems like OFDM and NOMA Comm. systems
Course Details
Title Matlab course for wireless communication engineering
Category Teaching & Academics
Sub Category Engineering
Creator Name Dr. Khaled Ramadan
Language English
Rating 4.8333335
Length 3:28 Hours
Coupon StatusCoupon Is Expired
Udemy Coupons Expire After 1000 Redemptions, So Please Join Our Telegram Or Whatsapp Group To Get An Instant Alert For Coupons.

Description

This is course is designed for under and post graduate students associated to the electronics and communication engineering department. It has 10 introductions of 30 minutes, each introduction discusses the theoretical explanation and the simulated figures that obtained through the explanation of the course. This course saves many months of hard work.

Using the Matlab program, you will learn:

1-How to estimate the Bit-Error-Rate (BER) performance of different modulation schemes like BPSK, QPSK, 16QAM, 64QAM, and 256QAM over an Additive White Gaussian Noise (AWGN) channel?

2-How to generate and add a Rayleigh fading channel based on the Jakes model?

3-How to mitigate the Rayleigh fading channel effect using different linear equalizer schemes?

4-How to estimate the Bit-Error-Rate (BER) performance over Single-Input-Single-Output Orthogonal Frequency Division Multiplexing (SISO-OFDM) communication system over a Rayleigh fading channel?

5-How to extend this work for different Multiple-Input-Multiple-Output (MIMO) configurations like 2×2, and 3×3 MIMO-OFDM communication systems over a Rayleigh fading channel?

6-A general code for BER estimation in case of Nt×Nr configuration for OFDM communication system over a Rayleigh fading channel will be presented, where Nt, is the number of transmitting antennas, and Nr is the number of receiving antennas.

7-Finally, the BER estimation for Non-Orthogonal Multiple Access (NOMA), which used in the 5G communication systems will be presented.